

Vehicle Technologies Office Battery R&D Overview

ARPA-E High Energy, Fast Charging Batteries for EV Applications Workshop

David Howell Vehicle Technologies Office

October 26, 2021

Global Expansion of Lithium Battery Demand and Manufacturing Capacity is Projected

- Numerous projections indicate a significant acceleration of lithium battery demand and production capacity over the next decade.
- The more recent projections indicate the most rapid acceleration.

Figure 2. Global Li-ion EV Battery Demand Projections. Yan Zhou, David Gohlke, Luke Rush, Jarod Kelly, and Qiang Dai (2021) Lithium-Ion Battery Supply Chain for E-Drive Vehicles in the United States: 2010-2020.

Source: Argonne National Laboratory ANL/ESD-21/3.

BMO, 2018

Demand

Global Expansion of Lithium Battery Manufacturing is already Occurring

- Lithium-ion battery cell production already poised to significantly expand by 2025
- A ~4X increase in the U.S.

Figure 3. Cell manufacturing capacities. Source: "Lithium-Ion Battery Megafactory Assessment", Benchmark Mineral Intelligence, March 2021.

National Blueprint for Lithium Batteries

By 2030, the United States and its partners will establish a secure battery materials and technology supply chain that supports long-term U.S. economic competitiveness and job creation, enables decarbonization goals, and meets national security requirements.

DOE Battery R&D

Basic Energy Sciences (BES)

Fundamental research to understand, predict, and control the interactions of matter and energy at the electronic, atomic, and molecular levels to enable revolutionary energy storage technologies

Vehicle Technologies Office (VTO)

Battery R&D for Electric Vehicles

- lithium ion
- lithium metal/lithium sulfur
- solid state materials

Office of Electricity (OE)

Energy Storage R&D for Stationary/Grid

- battery systems (lithium, sodium, etc)
- flow batteries
- other long duration storage

Advanced Projects Research Agency-Energy (ARPA-E)

"Off-roadmap" Transformational R&D

Advanced Manufacturing Office (AMO)

Support innovative manufacturing technology R&D focused on significantly reducing battery and energy storage cost, energy, emissions, and improve performance

Electric Vehicle Battery R&D

THREE MAJOR CHALLENGES

- 1. Further reduce battery costs (\$60/kWh cell)
- 2. Eliminate
 dependence on
 critical materials
 through material
 substitutes and/or
 recycling
- 3. Develop safe batteries that charge in <15 minutes

How Lithium-ion Batteries Work

Low or No Cobalt Cathodes New Liquid Electrolytes or Solid State Materials

Silicon or Lithium Metal Anodes

DOE VTO Battery R&D: Near, Next, and Long Term

Enhanced Li-ion (2020-2025) Graphite/NMC

Projected Cell Specific Energy and Cost 300Wh/kg, \$90-100/kWh

Current cycle life	> 1000	
Calendar life	> 10 years	
Mature Manufacturing	Yes	
Fast charge	limited	
Cost positive recycling	No	

R&D Needs

- Fast charge
- Low temperature performance
- Low/no cobalt cathodes
- Cost positive recycling

Next Gen Li-ion (2025-2030) Silicon/NMC (below 5wt%)

Projected Cell Specific Energy and Cost 400Wh/kg, ~\$75/kWh

Current cycle life	> 1000
Calendar life	~3 years
Mature Manufacturing	limited
Fast charge	limited
Cost positive recycling	No

R&D Needs

- Enhanced calendar life
- Abuse tolerance improvement
- Low/no cobalt cathodes
- Cost effective and scalable prelithiation

Lithium Metal (2025-2030) Li metal/DRX, Sulfur, other

Projected Cell Specific Energy and Cost 500Wh/kg, ~\$50-60/kWh

Current cycle life	> 500	
Calendar life	???	
Mature Manufacturing	No	
Fast charge	No	
Cost positive recycling	No	

R&D Needs

- Enhanced cycle and calendar life
- Protected lithium
- Dendrite detection and mitigation
- Cost effective manufacturing
- High conductivity solid electrolyte

Low/No Cobalt R&D

Cobalt and nickel are essential to today's Lithium-ion batteries and are critical materials

• The main chemistries under research high nickel NMC cathodes (Ni > 80%) and Cobalt free materials like the 5 Volt spinel, $LiMn_{1.5}Ni_{0.5}O_4$

UT-Austin/NREL/Tesla (NMCAM and NMA)

UC-Irvine/VA-Tech high-Ni (LiNi_{0.96}Ti_{0.02}Mg_{0.02}O₂).

Silicon Anodes

Opportunity

- Lower cost, volume, weight
- Earth Abundant Minerals
- Enable fast charge

Targets

- 375 Wh/kg
- 1,200 + mAh/g (~3X)
- 1000 cycles, 10+ years

Challenges

- First-cycle irreversible capacity loss
- Capacity fade: calendar life/cycle life
- High temperature thermal runaway

Extreme Fast Charging (XFC)

Enable fast charging (10 minutes or less) of high-capacity batteries (above 200Wh/kg) while minimizing life impacts.

- Developing a fundamental understanding of the complex multivariable interactions at different length scales
- Exploring novel electrode designs with state-of-the-art materials
- Charge rate optimization

Lithium Metal Progress - Battery500

National Labs

Universities

- An integration of innovations developed by the consortium
 - Localized concentrated electrolyte: better SEI, decelerated side reactions
 - Electrode architecture: accelerate mass transport, fast ion diffusion
 - Cell design and balance: identify the rate-limiting step and improve

Solid-State Electrolytes Under Investigation for Transportation Applications

Potential Technology Advantages

- Non-combustible electrolyte leading to improved safety, and thermal management and packaging advantages
- Enables thinner electrodes, including lithium metal, leading to higher volumetric energy density
- Potential Bi-Polar cell design leading to higher voltages and improved volumetric energy density
- Reduced Cost

	Polymers	Oxides	Sulfides
Representative:	PEO	LLZO	Li ₂ S - nP ₂ S ₅
			Blends
Matarial Dhasa	rial Phase Amorphous C	Crystalline	Crystalline or
iviateriai Priase			Glass
Ionic Conductivity	Poor	Fair	Good
Air Stability	Good	Good	Poor
Stability against Li Anode	Good	Good	Poor
Stability against High V Cathode	Fair	Good	Poor
Ease of Manufacturing/	Good/	Fair/	Good/
Processing Technique	Roll-to-roll	Tape casting	Roll-to-roll
		then sintering	
Companies	Hydro Quebec,	Ion Storage	Toyota,
	Bollore, Seeo	System,	Samsung, Solid
		Quantumscape	Power,
			PolyPlus

Up Stream

- Vulnerability: Class I nickel, lithium, and cobalt are the primary supply chain vulnerabilities.
- Vulnerability: U.S. has a <u>significant deficit</u> in mineral refining and processing

Mid Stream

Vulnerability: The U.S. has less than 10 percent of global market share for capacity across all major battery components and cell fabrication (with cathode and anode production capacity sorely lacking).

Down Stream

- ➤ Vulnerability: U.S. lags other markets for domestic demand of lithium batteries, primarily driven by EV demand.
- ➤ Vulnerability: U.S. lags other markets in lithium battery recycling, with less than 5% of lithium-ion batteries recycled each year.

Infrastructure Investment and Jobs Act

Thank You